RIEMANN–LIOUVILLE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH FRACTIONAL NONLOCAL MULTI-POINT BOUNDARY CONDITIONS
Bashir Ahmad,
Badrah Alghamdi (),
Ravi P. Agarwal and
Ahmed Alsaedi ()
Additional contact information
Bashir Ahmad: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Badrah Alghamdi: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Ravi P. Agarwal: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia†Department of Mathematics, Texas A&M University, Kingsville, Texas 78363-8202, USA
Ahmed Alsaedi: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
FRACTALS (fractals), 2022, vol. 30, issue 01, 1-11
Abstract:
In this paper, we investigate the existence and uniqueness of solutions for Riemann–Liouville fractional integro-differential equations equipped with fractional nonlocal multi-point and strip boundary conditions in the weighted space. The methods of our study include the well-known tools of the fixed point theory, which are commonly applied to establish the existence theory for the initial and boundary value problems after converting them into the fixed point problems. We also discuss the case when the nonlinearity depends on the Riemann–Liouville fractional integrals of the unknown function. Numerical examples illustrating the main results are presented.
Keywords: Riemann–Liouville Fractional Derivative; Integro-Differential Equations; Nonlocal Multi-Point Boundary Conditions; Existence; Fixed Point (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X22400023
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:30:y:2022:i:01:n:s0218348x22400023
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218348X22400023
Access Statistics for this article
FRACTALS (fractals) is currently edited by Tara Taylor
More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().