ARTIFICIAL INTELLIGENCE’S SIX MODELS CROSS-VALIDATION ON ALZHEIMER PATTERNS RECOGNITION USING ARTIFICIAL INTELLIGENCE
Miguel Patiã‘o Ortiz,
Ricardo Carreã‘o Aguilera,
Daniel Pacheco Bautista and
Julian Patiã‘o Ortiz
Additional contact information
Miguel Patiã‘o Ortiz: Instituto Politécnico Nacional — SEPI ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco. AlcaldÃa Gustavo A. Madero, C. P. 07738, Ciudad de México, México
Ricardo Carreã‘o Aguilera: ��Universidad del Istmo — UNISTMO, Ciudad Universitaria S/N, Barrio Santa Cruz 4a, Sección Sto. Domingo Tehuantepec, C. P. 70760, Oaxaca, México
Daniel Pacheco Bautista: ��Universidad del Istmo — UNISTMO, Ciudad Universitaria S/N, Barrio Santa Cruz 4a, Sección Sto. Domingo Tehuantepec, C. P. 70760, Oaxaca, México
Julian Patiã‘o Ortiz: Instituto Politécnico Nacional — SEPI ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco. AlcaldÃa Gustavo A. Madero, C. P. 07738, Ciudad de México, México
FRACTALS (fractals), 2025, vol. 33, issue 07, 1-8
Abstract:
The early detection of Alzheimer’s disease remains a critical challenge in medical research due to the complexity of its symptoms and the late-stage diagnosis commonly observed in clinical settings. This paper explores artificial intelligence models cross-validation, specifically a deep learning model based on the Faster-RCNN-ResNet-Coco 101 architecture versus others not using deep learning: decision Tree, random forest, support vector machine, XGBoost, and voting classifier to facilitate early diagnosis. By leveraging data from the ADNI open database, our study implements a comprehensive training process within a Python Conda environment, demonstrating promising classification accuracy and validation results. While various recognition systems exist, our approach provides an expert, ad hoc solution tailored to the early identification of Alzheimer’s patterns through tomography analysis based on Faster-RCNN-ResNet-Coco 101 architecture as the best choice in the tested models.
Keywords: Artificial Intelligence; ADNI Database; Faster-RCNN-ResNet-Coco 101; Deep Learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X25500616
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:33:y:2025:i:07:n:s0218348x25500616
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218348X25500616
Access Statistics for this article
FRACTALS (fractals) is currently edited by Tara Taylor
More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().