Credit risk assessment using purchase order information
Suguru Yamanaka ()
Additional contact information
Suguru Yamanaka: Faculty of Engineering, Musashino University, 3-3-3 Ariake Koto-ku, Tokyo 135-8181, Japan
International Journal of Financial Engineering (IJFE), 2018, vol. 05, issue 04, 1-19
Abstract:
This paper proposes advanced credit risk assessment and lending operations using purchase order information from borrower firms. Purchase order information from a borrower firm is useful for financial institutions to evaluate the actual business conditions of the firm. This paper shows the application of purchase order information to lending operations and credit risk assessment, and reveals its effectiveness. First, we propose a “purchase order based” credit risk model for real-time credit risk monitoring of firms. Financial institutions can monitor the actual business conditions of borrower firms by evaluating the firm’s asset value using purchase order information. A combination of traditional firm monitoring using financial statements and high-frequency monitoring using purchase order information enables financial institutions to assess the business conditions of borrower firms more precisely and efficiently. Then, with high-frequency data, financial institutions can give borrower firms appropriate support if necessary on a timely basis. Second, we illustrate purchase order financing, which is the lending method backed by purchase order information from borrowers. With purchase order financing, firms that consistently receive purchase orders from credit-worthy firms can borrow money under more favorable lending terms than the usual lending terms based on the financial statements of the borrower firm.
Keywords: Purchase order; lending operations; credit risk (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S242478631850041X
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijfexx:v:05:y:2018:i:04:n:s242478631850041x
Ordering information: This journal article can be ordered from
DOI: 10.1142/S242478631850041X
Access Statistics for this article
International Journal of Financial Engineering (IJFE) is currently edited by George Yuan
More articles in International Journal of Financial Engineering (IJFE) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().