COMPARISON OF INTERESTINGNESS MEASURES FOR WEB USAGE MINING: AN EMPIRICAL STUDY
Xiangji Huang ()
Additional contact information
Xiangji Huang: School of Information Technology, 3048 TEL Building, York University, 4700 Keele Street, Toronto, Canada M3J 1P3, Canada
International Journal of Information Technology & Decision Making (IJITDM), 2007, vol. 06, issue 01, 15-41
Abstract:
A common problem in mining association rules or sequential patterns is that a large number of rules or patterns can be generated from a database, making it impossible for a human analyst to digest the results. Solutions to the problem include, among others, using interestingness measures to identify interesting rules or patterns and pruning rules that are considered redundant. Various interestingness measures have been proposed, but little work has been reported on the effectiveness of the measures on real-world applications. We present an application of Web usage mining to a large collection of Livelink log data. Livelink is a web-based product of Open Text Corporation, which provides automatic management and retrieval of different types of information objects over an intranet, an extranet or the Internet. We report our experience in preprocessing raw log data, mining association rules and sequential patterns from the log data, and identifying interesting rules and patterns by use of interestingness measures and some pruning methods. In particular, we evaluate a number of interestingness measures in terms of their effectiveness in finding interesting association rules and sequential patterns. Our results show that some measures are much more effective than others.
Keywords: Web log mining; interestingness measures; association rule mining; sequential pattern mining (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219622007002368
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijitdm:v:06:y:2007:i:01:n:s0219622007002368
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219622007002368
Access Statistics for this article
International Journal of Information Technology & Decision Making (IJITDM) is currently edited by Yong Shi
More articles in International Journal of Information Technology & Decision Making (IJITDM) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().