A Research Review and Taxonomy Development for Decision Support and Business Analytics Using Semantic Text Mining
Andrea Kő and
Saira Gillani
Additional contact information
Saira Gillani: #x2020;Department of Computer Science, Bahria University, Karachi Campus, Karachi, Pakistan
International Journal of Information Technology & Decision Making (IJITDM), 2020, vol. 19, issue 01, 97-126
Abstract:
By 2018, business analytics (BA), believed by global CIOs to be of strategic importance, had for years been their top priority. It is also a focus of academic research, as shown by a large number of papers, books, and research reports. On the other hand, the BA domain suffers from several incorrect, imprecise, and incomplete notions. New areas and concepts emerge quickly; making it difficult to ascertain their structure. BA-related taxonomies play a crucial role in analyzing, classifying, and understanding related objects. However, according to the literature on taxonomy development in information systems (IS), in most cases the process is ad hoc. BA taxonomies and frameworks are available in the literature; however, some are excessively general frameworks with a high-level conceptual focus, while others are application or domain-specific. Our paper aims to present a novel semi-automatic method for taxonomy development and maintenance in the field of BA using content analysis and text mining. The contribution of our research is threefold: (1) the taxonomy development method, (2) the draft taxonomy for BA, and (3) identifying the latest research areas and trends in BA.
Keywords: Taxonomy; taxonomy development; business analytics; text mining; semantic technology; ontology (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.worldscientific.com/doi/abs/10.1142/S0219622019300076
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijitdm:v:19:y:2020:i:01:n:s0219622019300076
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219622019300076
Access Statistics for this article
International Journal of Information Technology & Decision Making (IJITDM) is currently edited by Yong Shi
More articles in International Journal of Information Technology & Decision Making (IJITDM) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().