EconPapers    
Economics at your fingertips  
 

PERTURBATION STABLE CONDITIONAL ANALYTIC MONTE-CARLO PRICING SCHEME FOR AUTO-CALLABLE PRODUCTS

Christian Fries and Mark S. Joshi ()
Additional contact information
Mark S. Joshi: Department of Economics, University of Melbourne, VIC 3010, Australia

International Journal of Theoretical and Applied Finance (IJTAF), 2011, vol. 14, issue 02, 197-219

Abstract: In this paper, we present a generic method for the Monte-Carlo pricing of (generalized) auto-callable products (aka. trigger products), i.e., products for which the payout function features a discontinuity with a (possibly) stochastic location (the trigger) and value (the payout).The Monte-Carlo pricing of products with discontinuous payout is known to come with a high Monte-Carlo error. The numerical calculation of sensitivities (i.e., partial derivatives) of such prices by finite differences gives very noisy results, since the Monte-Carlo approximation (being a finite sum of discontinuous functions) is not smooth. Additionally, the Monte-Carlo error of the finite-difference approximation explodes as the shift size tends to zero.Our method combines a product specific modification of the underlying numerical scheme, which is to some extent similar to an importance sampling and/or partial proxy simulation scheme and a reformulation of the payoff function into an equivalent smooth payout.From the financial product we merely require that hitting of the stochastic trigger will result in an conditionally analytic value. Many complex derivatives can be written in this form. A class of products where this property is usually encountered are the so called auto-callables, where a trigger hit results in cancellation of all future payments except for one redemption payment, which can be valued analytically, conditionally on the trigger hit.From the model we require that its numerical implementation allows for a calculation of the transition probability of survival (i.e., non-trigger hit). Many models allows this, e.g., Euler schemes of Itô processes, where the trigger is a model primitive.The method presented is effective across a large range of cases where other methods fail, e.g. small finite difference shift sizes or short time to trigger reset (approaching maturity); this means that a practitioner can use this method and be confident that it will work consistently.The method itself can be viewed as a generalization of the method proposed by Glasserman and Staum (2001), both with respect to the type (and shape) of the boundaries, as well as, with respect to the class of products considered. In addition we explicitly consider the calculation of sensitivities.

Keywords: Monte-Carlo simulation; pricing; greeks; variance reduction; auto-callable; trigger product; target redemption note (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219024911006334
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijtafx:v:14:y:2011:i:02:n:s0219024911006334

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0219024911006334

Access Statistics for this article

International Journal of Theoretical and Applied Finance (IJTAF) is currently edited by L P Hughston

More articles in International Journal of Theoretical and Applied Finance (IJTAF) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:ijtafx:v:14:y:2011:i:02:n:s0219024911006334