EconPapers    
Economics at your fingertips  
 

MOLECULAR DYNAMICS SIMULATION FOR THE CLUSTERING PROCESS BY TEMPERATURE CONTROL

T. Ikeshoji
Additional contact information
T. Ikeshoji: National Institute for Advanced Interdisciplinary Research Institute, 1-1-4 Higashi, Tsukuba, Ibaraki 305, Japan

Surface Review and Letters (SRL), 1996, vol. 03, issue 01, 247-251

Abstract: The clusterization process from gas states of Lennard–Jones (L–J) potential atom and water molecule of the TIP4P model was simulated by the molecular dynamics calculation with a constant-temperature thermostat at 0.1 (reduced unit) for the L–J atom system and at 200 K for the water molecule. The linear relationship between the logarithm of the populatlon and the cluster size was observed with no significant peak. The inner temperature of clusters was higher than the system temperature. Structure parameters derived from the inertia of clusters gave the following information on the structure. Clusters grow at first in linear or planar structure. Dipole interaction of water molecules favors more linear structure at the beginning of the cluster formation. Clusters around 13 L–J atoms become highly spherical and water clusters of 3–5 members become rings, after lowering of the temperature.

Date: 1996
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218625X96000486
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:srlxxx:v:03:y:1996:i:01:n:s0218625x96000486

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0218625X96000486

Access Statistics for this article

Surface Review and Letters (SRL) is currently edited by S Y Tong

More articles in Surface Review and Letters (SRL) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:srlxxx:v:03:y:1996:i:01:n:s0218625x96000486