PREPARATION AND CHARACTERIZATION OF Sr-DOPED HAp BIOMEDICAL COATINGS ON POLYDOPAMINE-TREATED Ti6Al4V SUBSTRATES
Gurmohan Singh,
Abhineet Saini and
B.â S. Pabla
Additional contact information
Gurmohan Singh: Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India
Abhineet Saini: ��Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
B.â S. Pabla: ��Department of Mechanical Engineering, National Institute of Technical Teacher Training and Research, Chandigarh, India
Surface Review and Letters (SRL), 2023, vol. 30, issue 01, 1-7
Abstract:
Ti6Al4V alloy of titanium is a significant biomaterial due to its biocompatible nature, but it lacks required bioactivity to make it mimic properties to a human bone. Thus, hydroxyl-apatite (HAp), an inorganic compound found in human bones, is generally coated onto Ti6Al4V substrates to improve their bio-characteristics. But, HAp itself lacks certain bio-functionalities, such as allowing tissue bone regeneration and poor binding to the Ti6Al4V substrate, which results in osteoporosis and reduced bioactivity of the bio-implant, respectively. The proposed way out for this is the further doping of HAp with Strontium (Sr) for enabling tissue bone regeneration as well as addition of Polydopamine (PDA) for improved adhesion of HAp-based coatings with the substrate. Moreover, PDA results in increased drug delivery area and thus can be used as a material for enhancing resistance to bacterial growth. The present study demonstrates an experimental work on deposition of HAp, HAp with PDA and HAp with PDA and Sr coatings deposited onto Ti6Al4V alloy by means of biomimetic coating technique. Initially the pure HAp coatings were deposited using 10 SBF (simulated body fluid) solution and optimized in terms of time duration for desired coating uniformity. Then, for the optimized coating duration, the PDA pretreated Ti6Al4V substrates were coated, utilizing HAp, and Sr (at two different compositions) combinations were deposited through modified 10 SBF solutions. The characterization involving microstructural analysis and phase detection was performed for all these coatings using Scanned Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction (XRD) of the coated substrates and adhesion strength was calculated using a standard pull out adhesion test ISO 13779–4. The study showed an effective and comparatively cheap method of depositing organic coatings using biomimetic technique to obtain improved bio-functionalities in metallic implants at low temperatures.
Keywords: Titanium alloy; HAp; polydopamine; Strontium; bioimplants; biomimetic coating; composite coatings (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218625X21410092
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:srlxxx:v:30:y:2023:i:01:n:s0218625x21410092
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218625X21410092
Access Statistics for this article
Surface Review and Letters (SRL) is currently edited by S Y Tong
More articles in Surface Review and Letters (SRL) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().