EconPapers    
Economics at your fingertips  
 

Research on the Price of Stock on AR, MA, ARMA, and ARMA-GARCH Models

Tianlei Zhu, Yingke Yang and Zheng Tao

Chapter 62 in Economic Management and Big Data Application:Proceedings of the 3rd International Conference, 2024, pp 710-718 from World Scientific Publishing Co. Pte. Ltd.

Abstract: This paper aims at issues of Goldman Sachs’ stock forecasting in a short time by using the time series analysis based on four models: AR, MA, ARMA, and ARMA-GARCH models and chooses the optimal model. In this paper, after selecting the sample data and preprocessing data, the regression evaluation index is used to analyze the preliminary models. After that, use the Sequence Stationarity Test and ADF Test to test the series’ stationarity, and analyze the solution of the ARMA model to conclude the formula. The regression evaluation parameters are then compared to the initial models. Later, by selecting from Gaussian distribution, student t distribution, and biased student t distribution, the solution of the AGMA-GARCH model is analyzed. By constructing ARMA and GARCH models, the short-term forecast stock price results are valid and feasible. It concludes that the Arma-GARCH model greatly improves the accuracy of stock forecasting.

Keywords: Big Data; Information Management; Economic; Data Applications; Blockchain; E-commerce (search for similar items in EconPapers)
JEL-codes: C63 C8 O14 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.worldscientific.com/doi/pdf/10.1142/9789811270277_0062 (application/pdf)
https://www.worldscientific.com/doi/abs/10.1142/9789811270277_0062 (text/html)
Ebook Access is available upon purchase.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:wschap:9789811270277_0062

Ordering information: This item can be ordered from

Access Statistics for this chapter

More chapters in World Scientific Book Chapters from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-04-13
Handle: RePEc:wsi:wschap:9789811270277_0062