Hybrid biased random sampling for multiple resourse-constrained project scheduling problems
Rainer Kolisch and
Andreas Drexl
No 354, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel from Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre
Abstract:
In this paper we propose a new heuristic to solve the well-known multiple resource-constrained project scheduling problem. The method is basically a biased random sampling procedure which shows extremely good results by use of the following features: A problem-based selection of the solution space, a sample-size-based guidance of the search, application of a priority rule superior to so-far existing rules, and finally the application of global and local (lower) bounds. Evaluating this new heuristic on a set of widely used benchmark-instances we show that it derives superior results than all other existing polynomially bounded algorithms.
Keywords: Resource-constrained project scheduling; heuristics; biased random sampling (search for similar items in EconPapers)
Date: 1994
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/155425/1/manuskript_354.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:cauman:354
Access Statistics for this paper
More papers in Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel from Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().