On robust local polynomial estimation with long-memory errors
Jan Beran,
Yuanhua Feng,
Sucharita Gosh and
Philipp Sibbertsen
No 00/18, CoFE Discussion Papers from University of Konstanz, Center of Finance and Econometrics (CoFE)
Abstract:
Prediction in time series models with a trend requires reliable estima- tion of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if least squares regression is used. In this paper, local polynomial smoothing based on M-estimators are asymptotically equivalent to the least square solution, under the (ideal) Gaussian model. Outliers turn out to have a major effect on nonrobust bandwidht selection, in particular due to the change of the dependence structure.
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/85198/1/dp00-18.pdf (application/pdf)
Related works:
Journal Article: On robust local polynomial estimation with long-memory errors (2002) 
Working Paper: On robust local polynominal estimation with long-memory errors (2000) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:cofedp:0018
Access Statistics for this paper
More papers in CoFE Discussion Papers from University of Konstanz, Center of Finance and Econometrics (CoFE) Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().