Learning cost sensitive binary classification rules accounting for uncertain and unequal misclassification costs
Lydia Rybizki
No 01/2014, FAU Discussion Papers in Economics from Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics
Abstract:
This paper proposes cost sensitive criteria for constructing classification rules by supervised learning methods. Reinterpreting established loss functions and considering those introduced by Buja, Stuetzle, et al. (2005) and Hand (2009), we identify criteria reflecting different degrees of information about misclassification costs. To adapt classification methodology to practical cost considerations, we suggest the use of these criteria for different model selection approaches in supervised learning. In addition, we investigate the effects of cost sensitive adaptations in CART and boosting and conclude that adaptations are more promising in the selection rather than in the estimation step.
Keywords: unequal misclassification costs; proper scoring rules; AUC; boosting; CART; model selection; pruning; early stopping (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/94192/1/779861043.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:iwqwdp:012014
Access Statistics for this paper
More papers in FAU Discussion Papers in Economics from Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().