EconPapers    
Economics at your fingertips  
 

Regularization and model selection in the context of density estimation

Martin Kreutz, Anja M. Reimetz, Bernhard Sendhoff, Claus Weihs and Werner von Seelen

No 1999,27, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: We propose a new information theoretically based optimization criterion for the estimation of mixture density models and compare it with other methods based on maximum likelihood and maximum a posterio estimation. For the optimization, we employ an evolutionary algorithm which estimates both structure and parameters of the model. Experimental results show that the chosen approach compares favourably with other methods for estimation problems with few sample data as well as for problems where the underlying density is non-stationary.

Date: 1999
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77271/2/1999-27.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:199927

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:199927