EconPapers    
Economics at your fingertips  
 

Optimal designs for testing the functional form of a regression via nonparametric estimation techniques

Stefanie Biedermann and Holger Dette

No 2000,41, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: For the problem of checking linearity in a heteroscedastic nonparametric regression model under a fixed design assumption we study maximin designs which maximize the minimum power of a nonparametric test over a broad class of alternatives from the assumed linear regression model. It is demonstrated that the optimal design depends sensitively on the used estimation technique (i.e. weighted or ordinary least squares) and on an inner product used in the definiton of the class of alternatives. Our results extend and put recent finndings of Wiens (1991) in a new light, who established the maximin optimality of the uniform design for lack-of-fit tests in homoscedastic multiple linear regression models.

Keywords: goodness-of-fit test; weighted least squares; optimal design; maximin optimality; D1-optimality (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77227/2/2000-41.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200041

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200041