Dynamic semiparametric factor models in risk neutral density estimation
Enzo Giacomini,
Wolfgang Härdle and
Volker Krätschmer
No 2008-038, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
Dimension reduction techniques for functional data analysis model and approximate smooth random functions by lower dimensional objects. In many applications the focus of interest lies not only in dimension reduction but also in the dynamic behaviour of the lower dimensional objects. The most prominent dimension reduction technique - functional principal components analysis - however, does not model time dependences embedded in functional data. In this paper we use dynamic semiparametric factor models (DSFM) to reduce dimensionality and analyse the dynamic structure of unknown random functions by means of inference based on their lower dimensional representation. We apply DSFM to estimate the dynamic structure of risk neutral densities implied by prices of option on the DAX stock index.
Keywords: Dynamic factor models; dimension reduction; risk neutral density (search for similar items in EconPapers)
JEL-codes: C14 C32 G12 (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/25280/1/57174401X.PDF (application/pdf)
Related works:
Journal Article: Dynamic semiparametric factor models in risk neutral density estimation (2009) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2008-038
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().