Variable selection in Cox regression models with varying coefficients
Toshio Honda and
Wolfgang Härdle
No 2012-061, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
We deal with two kinds of Cox regression models with varying coefficients. The coefficients vary with time in one model. In the other model, there is an important random variable called an index variable and the coefficients vary with the variable. In both models, we have p-dimensional covariates and p increases moderately. However, it is the case that only a small part of the covariates are relevant in these situations. We carry out variable selection and estimation of the coefficient functions by using the group SCAD-type estimator and the adaptive group Lasso estimator. We examine the theoretical properties of the estimators, especially the L2 convergence rate, the sparsity, and the oracle property. Simulation studies and a real data analysis show the performance of these new techniques.
Keywords: Cox regression model; high-dimensional data; sparsity; oracle estimator; B-splines; group SCAD; adaptive group Lasso; L2 convergence rate (search for similar items in EconPapers)
JEL-codes: C14 C24 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/79573/1/728317834.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2012-061
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().