Automated valuation modelling: A specification exercise
Rainer Schulz,
Martin Wersing and
Axel Werwatz
No 2013-046, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
Market value predictions for residential properties are important for investment decisions and the risk management of households, banks, and real estate developers. The increased access to market data has spurred the development and application of Automated Valuation Models (AVMs), which can provide appraisals at low cost. We discuss the stages involved when developing an AVM. By reflecting on our experience with md*immo, an AVM from Berlin, Germany, our paper contributes to an area that has not received much attention in the academic literature. In addition to discussing the main stages of AVM development, we examine empirically the statistical model development and validation step. We find that automated outlier removal is important and that a log model performs best, but only if it accounts for the retransformation problem and heteroscedasticity.
Keywords: Hedonic regression; log transformation; predictive performance (search for similar items in EconPapers)
JEL-codes: C52 C53 R32 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/91574/1/SFB649DP2013-046.pdf (application/pdf)
Related works:
Journal Article: Automated valuation modelling: a specification exercise (2014) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2013-046
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().