Synergizing Digital Twin Technology for Advanced Depression Categorization in Social-Media through Data Mining Analysis
Sajawal Khan ()
Additional contact information
Sajawal Khan: School of Information Engineering, Chang’an University, Xi'an, Shaanxi Province, China
International Journal of Innovations in Science & Technology, 2024, vol. 6, issue 1, 1-10
Abstract:
The progression from negative emotions to depression is a significant concern, marked by persistent sadness and an inability to cope with challenging circumstances. Regrettably, it can lead to the extreme step of suicide. According to the World Health Organization (WHO), 4.4% of the global population currently grapples with depression. Shockingly, 700,000 individuals worldwide took their own lives in 2023, and this tragic number continues to escalate. Our objective is to detect signs of depression in individuals through their social media posts, SMS, or comments. We collected nearly 10,000 pieces of information from Twitter comments, Facebook posts, and remarks. Employing data mining and machine learning algorithms has proven instrumental in swiftly discerning individuals' emotional states. To predict depression versus non-depression, we employed six classifiers, with support vector machines (SVMs) demonstrating the highest accuracy. A comparison between SVM and Naïve Bayes revealed that SVM yielded superior results in our study.
Keywords: Digital twin technology; Data Mining; Sentiment Analysis; Social Media; Depression; Categorization (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journal.50sea.com/index.php/IJIST/article/view/584/1247 (application/pdf)
https://journal.50sea.com/index.php/IJIST/article/view/584 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:abq:ijist1:v:6:y:2024:i:1:p:1-10
Access Statistics for this article
International Journal of Innovations in Science & Technology is currently edited by Prof. Dr. Syed Amer Mahmood
More articles in International Journal of Innovations in Science & Technology from 50sea
Bibliographic data for series maintained by Iqra Nazeer ().