Economics at your fingertips  

What Can We Learn from Experiments? Understanding the Threats to the Scalability of Experimental Results

Omar Al-Ubaydli, John List () and Dana L. Suskind

American Economic Review, 2017, vol. 107, issue 5, 282-86

Abstract: Policymakers often consider interventions at the scale of the population, or some other large scale. One of the sources of information about the potential effects of such interventions is experimental studies conducted at a significantly smaller scale. A common occurrence is for the treatment effects detected in these small-scale studies to diminish substantially in size when applied at the larger scale that is of interest to policymakers. This paper provides an overview of the main reasons for a breakdown in scalability. Understanding the principal mechanisms represents a first step toward formulating countermeasures that promote scalability.

JEL-codes: C21 C90 D82 (search for similar items in EconPapers)
Date: 2017
Note: DOI: 10.1257/aer.p20171115
References: Add references at CitEc
Citations: View citations in EconPapers (6) Track citations by RSS feed

Downloads: (external link) (application/pdf) ... lLBwewSd3sJm3feAMFsm (application/zip)
Access to full text is restricted to AEA members and institutional subscribers.

Related works:
Working Paper: What Can We Learn From Experiments? Understanding the Threats to the Scalability of Experimental Results (2017) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

Access Statistics for this article

American Economic Review is currently edited by Esther Duflo

More articles in American Economic Review from American Economic Association Contact information at EDIRC.
Bibliographic data for series maintained by Michael P. Albert ().

Page updated 2019-03-18
Handle: RePEc:aea:aecrev:v:107:y:2017:i:5:p:282-86