Learning from evidence in a complex world
J.D. Sterman
American Journal of Public Health, 2006, vol. 96, issue 3, 505-514
Abstract:
Policies to promote public health and welfare often fail or worsen the problems they are intended to solve. Evidence-based learning should prevent such policy resistance, but learning in complex systems is often weak and slow. Complexity hinders our ability to discover the delayed and distal impacts of interventions, generating unintended "side effects." Yet learning often fails even when strong evidence is available: common mental models lead to erroneous but self-confirming inferences, allowing harmful beliefs and behaviors to persist and undermining implementation of beneficial policies. Here I show how systems thinking and simulation modeling can help expand the boundaries of our mental models, enhance our ability to generate and learn from evidence, and catalyze effective change in public health and beyond.
Date: 2006
References: Add references at CitEc
Citations: View citations in EconPapers (77)
Downloads: (external link)
http://hdl.handle.net/10.2105/AJPH.2005.066043
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:aph:ajpbhl:10.2105/ajph.2005.066043_3
DOI: 10.2105/AJPH.2005.066043
Access Statistics for this article
American Journal of Public Health is currently edited by Alfredo Morabia
More articles in American Journal of Public Health from American Public Health Association
Bibliographic data for series maintained by Christopher F Baum ().