A Review of Nonparametric Time Series Analysis
Wolfgang Härdle,
Helmut Lütkepohl and
Rong Chen
International Statistical Review, 1997, vol. 65, issue 1, 49-72
Abstract:
Various features of a given time series may be analyzed by nonparametric techniques. Generally the characteristic of interest is allowed to have a general form which is approximated increasingly precisely when the sample size goes to infinity. We review nonparametric methods of this type for estimating the spectral density, the conditional mean, higher order conditional moments or conditional densities. Moreover, density estimation with correlated data, bootstrap methods for time series and nonparametric trend analysis are described. Beaucoup des elements des séries temporelles sont analysable par des methodes non‐paramétriques. L'objet d'interé a une forme generale qui est approximće plus et plus préciseacute;ment le nomber d'obervations augmente. cet article présente un survey des procédures non paramétriques en analyse des séries temporelles. Nous illustroas au moyen d'exemples portant sur I'cstimation de densité, sur le bootstrap et l'estimation de tendence.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (40)
Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.1997.tb00367.x
Related works:
Working Paper: A Review of Nonparametric Time Series Analysis (1996)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:65:y:1997:i:1:p:49-72
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().