A Unified View of Signal Extraction, Benchmarking, Interpolation and Extrapolation of Time Series
Estela Bee Dagum,
Pierre A. Cholette and
Zhao‐Guo Chen
International Statistical Review, 1998, vol. 66, issue 3, 245-269
Abstract:
Time series data are often subject to statistical adjustments needed to increase accuracy, replace missing values and/or facilitate data analysis. The most common adjustments made to original observations are signal extraction (e.g. smoothing), benchmarking, interpolation and extrapolation. In this article, we present a general dynamic stochastic regression model, from which most of these adjustments can be performed, and prove that the resulting generalized least square estimator is minimum variance linear unbiased. We extend current methods to include those cases where the signal follows a mixed model (deterministic and stochastic components) and the errors are autocorrelated and heteroscedastic. Lesn séries chronoligues sont souvent soumises à des ajustements de nature statistique, requis pour en augmenter la précision, remplacer des valeus manquantes et faciliter l'interprétation L'extration de signal (e.g. lissage), l'étalonnage, l'interpolation et l'extrapoltion comptent parmis les adjustements les plus communs. Le présent article pré un modéle de régression dynamique et stochstique, à partir duquel la plupart de ces ajustements peuvent se faire; il prouve que l'estimateur parmoindres carrés généralisés résultant est l'estimateur linéaire non‐biaisé de variance mimimum. L'article généralise ausicertaines méthodes, afin de trater les cas de signal “mixte;” (avec composantes déterministe et stochastique) et d'ereurs autocorrétéroschédastiques.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.1998.tb00372.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:66:y:1998:i:3:p:245-269
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().