Bayesian Comparison of ARIMA and Stationary ARMA Models
John Marriott and
Paul Newbold
International Statistical Review, 1998, vol. 66, issue 3, 323-336
Abstract:
Time series analysts have long been concerned with distinguishing stationary “generating processes” from processes for which differencing is required to induce stationarity. In practical applications, this issue is addressed almost invariably through formal hypothesis testing. In this paper, we explore some aspects of the Bayesian approach to the problem, leading to the calculation of posterior odds ratios. Interesting features arise in the simplest possible variant of the problem, where a choice has to be made between a random walk and a stationary first order autoregressive model. We discuss in detail the analysis of this case, and also indicate how our approach extends to the more general comparison of an ARIMA model with a stationary competitor. Les chercheurs intéresseés par l'analyse des données chronologiques sont préoccupés de discemer les procesus générant des séies stationnaries des processus générant des séries stationnaies dans la différence. Typiquement, cette question est adressée au moyen d'un test d'hypothése. Les auteurs appliquent ici la méthode bayesienne pour faire un choix. Meme dans le cas simple où le choix est entre un modèle de chocs aleatoires et un modèle stationnaire autoregreif de premier ordre, l'approche présente des propriétés notables. l'application de la méthode proposée pour comparer un modèle ARIMA à un modéle stationnaire alternatif.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.1998.tb00376.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:66:y:1998:i:3:p:323-336
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().