EconPapers    
Economics at your fingertips  
 

Bayesian Comparison of ARIMA and Stationary ARMA Models

John Marriott and Paul Newbold

International Statistical Review, 1998, vol. 66, issue 3, 323-336

Abstract: Time series analysts have long been concerned with distinguishing stationary “generating processes” from processes for which differencing is required to induce stationarity. In practical applications, this issue is addressed almost invariably through formal hypothesis testing. In this paper, we explore some aspects of the Bayesian approach to the problem, leading to the calculation of posterior odds ratios. Interesting features arise in the simplest possible variant of the problem, where a choice has to be made between a random walk and a stationary first order autoregressive model. We discuss in detail the analysis of this case, and also indicate how our approach extends to the more general comparison of an ARIMA model with a stationary competitor. Les chercheurs intéresseés par l'analyse des données chronologiques sont préoccupés de discemer les procesus générant des séies stationnaries des processus générant des séries stationnaies dans la différence. Typiquement, cette question est adressée au moyen d'un test d'hypothése. Les auteurs appliquent ici la méthode bayesienne pour faire un choix. Meme dans le cas simple où le choix est entre un modèle de chocs aleatoires et un modèle stationnaire autoregreif de premier ordre, l'approche présente des propriétés notables. l'application de la méthode proposée pour comparer un modèle ARIMA à un modéle stationnaire alternatif.

Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.1998.tb00376.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:66:y:1998:i:3:p:323-336

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:66:y:1998:i:3:p:323-336