EconPapers    
Economics at your fingertips  
 

Bayes Convolution

Edwin R. van den Heuvel and Chris A. J. Klaassen

International Statistical Review, 1999, vol. 67, issue 3, 287-299

Abstract: A general convolution theorem within a Bayesian framework is presented. Consider estimation of the Euclidean parameter θ by an estimator T within a parametric model. Let W be a prior distribution for θ and define G as the W‐average of the distribution of T ‐ θ under θ. In some cases, for any estimator T the distribution G can be written as a convolution G = K * L with K a distribution depending only on the model, i.e. on W and the distributions under θ of the observations. In such a Bayes convolution result optimal estimators exist, satisfying G = K. For location models we show that finite sample Bayes convolution results hold in the normal, loggamma and exponential case. Under regularity conditions we prove that normal and loggamma are the only smooth location cases. We also discuss relations with classical convolution theorems. Nous considérons l'estimation d'un paramètre euclidien θ par un estimateur T dans un modèle paramétrique. Soit W une distribution a priori pour θ et definirons Gpar la W‐moyenne de la distribution de T‐θ sous θ. II ya des situations dans lesquelles la distribution G est une convolution G = K•L pour tout estimateur T,où K est une distribution qui dépend seulement du modèle, c‐à‐d de W et des distributions sous θ des observations.En cas de ce resultat de convolution bayésiennem des estimaturs optimaux existent qui satisfont à G = K. Pour des modéles de location nous prouvons, qu'il y a des résultats de convolution bayésienne àéchantillons finis dans les casnormaux, log‐gamma et exponentiels. Sous des conditions de régularité nous prouvons. que les seules situations polies de location sont des normales et log‐gamma. Nous discutons aussi des relations avec les théorèmes classiques de convolution.

Date: 1999
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.1999.tb00450.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:67:y:1999:i:3:p:287-299

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:67:y:1999:i:3:p:287-299