A Review of Statistical Methods for Genome Mapping
Hywel B. Jones
International Statistical Review, 2000, vol. 68, issue 1, 5-21
Abstract:
Framework maps of the human genome are an important staging post in the on‐going effort to sequence the entire genome. The existence of high quality maps is also a prerequistite for studies attempting to determine the location of genes involved in common diseases. The basic experimental approaches to constructing both genetic and physical maps are briefly described as well as their respective uses. A variety of statistical approaches to map construction are outlined including parsimony, maximum likelihood and Bayesian methodologies. The mostly widely used of these, the method of maximum likelihood, is discussed in detail, particularly in the context of physical mapping using radiation hybrids. Finally, current statistical issues and problems in the field of genome mapping are described. Des cartes squelette du génome humain sont une étape, important dans l'effort actuel pour séquecer, le génome tout entier. L'existence de cartes de bonne qualité est aussi la condition d'études visant à localiser les génes, interwenant dans des maladies courantes. Les approches expérimentales de base pour construire tant des cartes génétigues, que physiques sont briévement, décrites ainsi que leurs usages respectifs. Plusieurs méthodes, statistiques de cartographie sont mises en relief: notamment celles de parcimonie, du maximum de vraisemblance et bayésiennce.La plus largement utilisée‐laméthode, du maximum de vraisemblance‐est examinéen détail, particuliérement pour la cartographue physique utilisant des phybrides d'irradiation Enfin sont abordés, divers questions et probémes, courants on matiéde cartographie génétique.
Date: 2000
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.2000.tb00384.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:68:y:2000:i:1:p:5-21
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().