EconPapers    
Economics at your fingertips  
 

Microsimulation of Business Performance

Philip Kokic, Ray Chambers and Steve Beare

International Statistical Review, 2000, vol. 68, issue 3, 259-275

Abstract: Microsimulation of business performance based on sample survey data is a relatively underdeveloped field, but its application in government economic policy formulation is potentially great since it can be used to measure the distributional effects of change rather than just average change. Techniques which account for the dynamic response of businesses to macro level price expectations have recently been developed (Kokic et al., 1993). These allow individual level business performance to be forecast from sample survey data. In this paper we outline a general methodology for combining these forecasting techniques with Monte Carlo simulation in order to produce a microsimulation of business performance that accurately captures the true distributional characteristics of the underling survey data. Applying this methodology to Australian farm survey data, we show that these methods may be used to forecast the distribution of farm business production and performance within arbitrary subdomains of the surveyed population conditional on a given set of expected commodity price outcomes. The microsimulations reflect both the uncertainty due to climatic variation from one year to the next, which in the Australian context depends largely on geographic location, as well as the uncertainty of commodity prices.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.2000.tb00330.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:68:y:2000:i:3:p:259-275

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:68:y:2000:i:3:p:259-275