EconPapers    
Economics at your fingertips  
 

A Guide to Exact Simulation

Xeni K. Dimakos

International Statistical Review, 2001, vol. 69, issue 1, 27-48

Abstract: Markov Chain Monte Carlo (MCMC) methods are used to sample from complicated multivariate distributions with normalizing constants that may not be computable in practice and from which direct sampling is not feasible. A fundamental problem is to determine convergence of the chains. Propp & Wilson (1996) devised a Markov chain algorithm called Coupling From The Past (CFTP) that solves this problem, as it produces exact samples from the target distribution and determines automatically how long it needs to run. Exact sampling by CFTP and other methods is currently a thriving research topic. This paper gives a review of some of these ideas, with emphasis on the CFTP algorithm. The concepts of coupling and monotone CFTP are introduced, and results on the running time of the algorithm presented. The interruptible method of Fill (1998) and the method of Murdoch & Green (1998) for exact sampling for continuous distributions are presented. Novel simulation experiments are reported for exact sampling from the Ising model in the setting of Bayesian image restoration, and the results are compared to standard MCMC. The results show that CFTP works at least as well as standard MCMC, with convergence monitored by the method of Raftery & Lewis (1992, 1996).

Date: 2001
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.2001.tb00478.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:69:y:2001:i:1:p:27-48

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:69:y:2001:i:1:p:27-48