Probabilistic Models for Bacterial Taxonomy
M. Gyllenberg and
T. Koski
International Statistical Review, 2001, vol. 69, issue 2, 249-276
Abstract:
We give a survey of different partitioning methods that have been applied to bacterial taxonomy. We introduce a theoretical framework, which makes it possible to treat the various models in a unified way. The key concepts of our approach are prediction and storing of microbiological information in a Bayesian forecasting setting. We show that there is a close connection between classification and probabilistic identification and that, in fact, our approach ties these two concepts together in a coherent way. Nous donnons ici une présentation gén érale des différentesmé méthodes probabilistes de partition appliquéquées à la taxonomic bactérienne, dans un cadre théorique nouveau qui en permet un traitement unifié. Notre approch repose sur une méthode de prévision bayesienne pour la prédiction et le stockage de I; information mecribiologique. Nous montrons que les notions de classification et d' ideutification probabiliste sont étroitement liées et que notre théorie réconcilie ces deux concepts dans une approche chérente.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.2001.tb00458.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:69:y:2001:i:2:p:249-276
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().