Idiot's Bayes—Not So Stupid After All?
David J. Hand and
Keming Yu
International Statistical Review, 2001, vol. 69, issue 3, 385-398
Abstract:
Folklore has it that a very simple supervised classification rule, based on the typically false assumption that the predictor variables are independent, can be highly effective, and often more effective than sophisticated rules. We examine the evidence for this, both empirical, as observed in real data applications, and theoretical, summarising explanations for why this simple rule might be effective. La tradition veunt qu'une règle très simple assumant l'independance des variables prédictives. une hypothèse fausse dans la plupart des cas, peut être très efficace, souvent même plus efficace qu'une méthode plus sophistiquée en ce qui concerne l'attribution de classes a un groupe d'objets. A ce sujet, nous examinons les preuves empiriques, et les preuves théoriques, e'est‐a‐dire les raisons pour lesquelles cette simple règle pourrait faciliter le processus de tri.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.2001.tb00465.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:69:y:2001:i:3:p:385-398
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().