On Tests for a Normal Mean with Known Coefficient of Variation
Kavitha Bhat and
K. Aruna Rao
International Statistical Review, 2007, vol. 75, issue 2, 170-182
Abstract:
Hinkley (1977) derived two tests for testing the mean of a normal distribution with known coefficient of variation (c.v.) for right alternatives. They are the locally most powerful (LMP) and the conditional tests based on the ancillary statistic for μ. In this paper, the likelihood ratio (LR) and Wald tests are derived for the one‐ and two‐sided alternatives, as well as the two‐sided version of the LMP test. The performances of these tests are compared with those of the classical t, sign and Wilcoxon signed rank tests. The latter three tests do not use the information on c.v. Normal approximation is used to approximate the null distribution of the test statistics except for the t test. Simulation results indicate that all the tests maintain the type‐I error rates, that is, the attained level is close to the nominal level of significance of the tests. The power functions of the tests are estimated through simulation. The power comparison indicates that for one‐sided alternatives the LMP test is the best test whereas for the two‐sided alternatives the LR or the Wald test is the best test. The t, sign and Wilcoxon signed rank tests have lower power than the LMP, LR and Wald tests at various alternative values of μ. The power difference is quite large in several simulation configurations. Further, it is observed that the t, sign and Wilcoxon signed rank tests have considerably lower power even for the alternatives which are far away from the null hypothesis when the c.v. is large. To study the sensitivity of the tests for the violation of the normality assumption, the type I error rates are estimated on the observations of lognormal, gamma and uniform distributions. The newly derived tests maintain the type I error rates for moderate values of c.v. Hinkley (1997) a obtenu deux tests de la moyenne d'une distribution normale avec coefficient de variation connu (c.v.) pour des alternatives à droite. Ce sont les tests localement le plus puissant (LMP) et conditionnels basés sur des statistiques auxiliaires pour μ. Dans cet article, le ratio de vraisemblance (LR) et les tests de Wald sont dérivés pour des alternatives unilatérales et bilatérales, de même qu'une version bilatérale du test LMP. Les performances de ces tests sont comparées avec celles du t classique, des tests des signes et du rang signé de Wilcoxon. Les trois derniers tests n'utilisent pas l'information sur le c.v. L'approximation normale est utilisée pour la distribution nulle des statistiques de test sauf pour le test du t. Les résultats de la simulation indiquent que tous les tests conservent les taux d'erreur de type I, c'est à dire que le niveau atteint est proche du niveau nominal de significativité des tests. Les fonctions de puissance de ces tests sont estimées par simulation. La comparaison de puissance indique que pour les alternatives unilatérales le test LMP est le meilleur tandis que pour les alternatives bilatérales le LR ou le test de Wald est le meilleur. Le t, les tests de rang des signes et du rang signé de Wilcoxon ont une puissance plus faible que les tests LMP, LR et Wald pour différentes valeurs alternatives de μ. La différence de puissance est assez importante dans plusieurs configurations de simulation. En outre on observe que le t, les tests des signes et du rang signé de Wilcoxon ont une puissance beaucoup plus basse, même pour des alternatives qui sont très loin de l'hypothèse nulle, lorsque le c.v. est grand. Pour étudier la sensibilité des tests pour la violation de l'hypothèse de normalité, les ratios d'erreur de type I sont estimés sur les observations des distributions log normales, gamma et uniformes. Les tests nouvellement obtenus conservent les taux d'erreur de type I pour des valeurs modérées du c.v.
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.2007.00019.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:75:y:2007:i:2:p:170-182
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().