Probability Integrals of the Multivariate t Distribution
Saralees Nadarajah and
Samuel Kotz
International Statistical Review, 2008, vol. 76, issue 1, 58-88
Abstract:
Results on probability integrals of multivariate t distributions are reviewed. The results discussed include: Dunnett and Sobel's probability integrals, Gupta and Sobel's probability integrals, John's probability integrals, Amos and Bulgren's probability integrals, Steffens' non‐central probabilities, Dutt's probability integrals, Amos' probability integral, Fujikoshi's probability integrals, probabilities of cone, probabilities of convex polyhedra, probabilities of linear inequalities, maximum probability content, and Monte Carlo evaluation. On examine les résultats d'intégrales de probabilité de distributions multivariées t. Les résultats discutés incluent: intégrales de probabilité de Dunnett et Sobel, intégrales de probabilité de Gupta et Sobel, intégrales de probabilité de John, intégrales de probabilité de Amos et Bulgren, probabilités non centrées de Steffen, intégrales de probabilité de Dutt, intégrale de probabilité de Amos, intégrales de probabilité de Fujikoshi, probabilités de cônes, probabilités de polyèdres convexes, probabilités d'inégalités linéaires, probabilité maximale, évaluation de Monte Carlo.
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.2007.00021.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:76:y:2008:i:1:p:58-88
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().