Parametric and Nonparametric Regression in the Presence of Endogenous Control Variables
Markus Frölich ()
International Statistical Review, 2008, vol. 76, issue 2, 214-227
Abstract:
The aim of this paper is to convey to a wider audience of applied statisticians that nonparametric (matching) estimation methods can be a very convenient tool to overcome problems with endogenous control variables. In empirical research one is often interested in the causal effect of a variable X on some outcome variable Y. With observational data, i.e. in the absence of random assignment, the correlation between X and Y generally does not reflect the treatment effect but is confounded by differences in observed and unobserved characteristics. Econometricians often use two different approaches to overcome this problem of confounding by other characteristics. First, controlling for observed characteristics, often referred to as selection on observables, or instrumental variables regression, usually with additional control variables. Instrumental variables estimation is probably the most important estimator in applied work. In many applications, these control variables are themselves correlated with the error term, making ordinary least squares and two‐stage least squares inconsistent. The usual solution is to search for additional instrumental variables for these endogenous control variables, which is often difficult. We argue that nonparametric methods help to reduce the number of instruments needed. In fact, we need only one instrument whereas with conventional approaches one may need two, three or even more instruments for consistency. Nonparametric matching estimators permit consistent estimation without the need for (additional) instrumental variables and permit arbitrary functional forms and treatment effect heterogeneity. Cet article démontre que l'estimation non paramétrique peut être utile pour résoudre le problème lié aux variables de contrôle endogènes. L'objectif de nombreux travaux empiriques est d'identifier l'effet causal d'une variable X sur une variable dépendante Y. La corrélation entre X et Y qui est observée dans les données ne reflète généralement pas l'effet du traitement car celui‐ci est masqué par les différences dans les caractéristiques (observables ou non) des deux groupes. Les économètres résolvent souvent ce problème d'une des deux façons suivantes: (1) en contrôlant pour la sélection qui est liée aux caractéristiques observées ou (2) en utilisant des instruments, qui ne sont fréquemment valides que conditionnellement à d'autres variables de contrôle. L'estimation basée sur des instruments (IV) est probablement la méthode la plus importante dans la recherche appliquée. Dans beaucoup d'applications ces variables de contrôle sont elles‐mêmes suspectées d'endogénéité ce qui rendrait OLS et 2SLS inconsistants. La solution habituelle est de chercher des instruments supplémentaires pour ces variables de contrôle endogènes, mais cette approche est très difficile en pratique. Nous montrons dans cet article qu'utiliser une méthode instrumentale non paramétrique réduit le nombre des instruments nécessaires. En effet, nous n'avons besoin dans ce cas que d'un seul instrument alors que les méthodes conventionnelles nécessitent deux, trois ou plus encore d'instruments pour garantir leur consistance. Il existe des estimateurs non paramétriques basés sur le matching qui convergent à la vitesse racine de n sans exiger des instruments supplémentaires et qui ne restreignent ni la forme fonctionnelle ni l'hétérogénéité de l'effet du traitement.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.2008.00045.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:76:y:2008:i:2:p:214-227
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().