EconPapers    
Economics at your fingertips  
 

Calculating Cumulants of a Taylor Expansion of a Multivariate Function

Kamanzi‐wa‐Binyavanga

International Statistical Review, 2009, vol. 77, issue 2, 212-221

Abstract: A method, which we believe is simpler and more transparent than the one due to McCullagh (1984), is described for obtaining the cumulants of a scalar multivariate stochastic Taylor expansion. Its generalisation is also suggested. An important feature, previously not reported, is that the expansion of every cumulant of order≥ 2 is made up of separate subseries. In order to handle certain frequently occurring sums over permutations of members of compound index sets, we introduce a new notation [m]*, where m is a positive integer. Une méthode plus simple et plus transparente que celle de McCullagh (1984), est décrite pour obtenir les cumulants d'une expansion de Taylor scalaire, stochastique à plusieurs variables. Sa généralisation est aussi suggérée. Une caractéristique importante pas signalée auparavant est que l'expansion de chaque cumulant de l'ordre ≥ 2 est composée de sous‐séries séparées. Pour pouvoir traiter certaines sommes qui apparaissent fréquemment sur des permutations des membres des ensembles d'indices composés, nous introduisons une nouvelle notation [m], où m est un entier relatif appositif.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.2008.00058.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:77:y:2009:i:2:p:212-221

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:77:y:2009:i:2:p:212-221