Modelling and Estimation for Bivariate Financial Returns
Thomas Fung and
Eugene Seneta
International Statistical Review, 2010, vol. 78, issue 1, 117-133
Abstract:
Maximum likelihood estimates are obtained for long data sets of bivariate financial returns using mixing representation of the bivariate (skew) Variance Gamma (VG) and two (skew) t distributions. By analysing simulated and real data, issues such as asymptotic lower tail dependence and competitiveness of the three models are illustrated. A brief review of the properties of the models is included. The present paper is a companion to papers in this journal by Demarta & McNeil and Finlay & Seneta. Des estimateurs maximum de vraisemblance sont obtenus pour de longues séries bivariées de rendements financiers modélisées à partir d'un mélange (asymétrique) de type Variance‐Gamma et de deux mélanges (asymétriques) de type Student. L'analyse de données simulées et réelles permet d'illustrer quelques‐uns des aspects asymptotiques de ces trois modèles, tels que les dépendances asymptotiques des extrêmes dans la queue gauche, et leurs performances. Un bref compte‐rendu des propriétés de ces modèles est également inclus. Le présent travail accompagne et complète les articles de Demarta et McNeil (2005) et de Finlay et Seneta (2008) parus dans la même revue.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.2010.00106.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:78:y:2010:i:1:p:117-133
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().