EconPapers    
Economics at your fingertips  
 

A Model for Positively Correlated Count Variables

Jesper Møller and Ege Rubak

International Statistical Review, 2010, vol. 78, issue 1, 65-80

Abstract: An α‐permanental random field is briefly speaking a model for a collection of non‐negative integer valued random variables with positive associations. Though such models possess many appealing probabilistic properties, many statisticians seem unaware of α‐permanental random fields and their potential applications. The purpose of this paper is to summarize useful probabilistic results, study stochastic constructions and simulation techniques, and discuss some examples of α‐permanental random fields. This should provide a useful basis for discussing the statistical aspects in future work. Un champ aléatoire α‐permanental est la modélisation d'une collection de variables aléatoires entières non négatives positivement associées. Malgré leurs attrayantes propriétés probabilistes et leurs nombreuses applications potentielles, ces modèles restent ignorés de la majorité des statisticiens. Le but de cet article est de fournir les résultats probabilistes utiles, d'étudier les constructions stochastiques et les techniques de simulation, ainsi que de discuter quelques exemples, de façon à fournir une base utile à une discussion future des aspects statistiques des champs permanentaux.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/j.1751-5823.2009.00091.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:78:y:2010:i:1:p:65-80

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:78:y:2010:i:1:p:65-80