Extreme Value Theory and Statistics of Univariate Extremes: A Review
M. Ivette Gomes and
Armelle Guillou
International Statistical Review, 2015, vol. 83, issue 2, 263-292
Abstract:
type="main" xml:id="insr12058-abs-0001"> Statistical issues arising in modelling univariate extremes of a random sample have been successfully used in the most diverse fields, such as biometrics, finance, insurance and risk theory. Statistics of univariate extremes (SUE), the subject to be dealt with in this review paper, has recently faced a huge development, partially because rare events can have catastrophic consequences for human activities, through their impact on the natural and constructed environments. In the last decades, there has been a shift from the area of parametric SUE, based on probabilistic asymptotic results in extreme value theory, towards semi-parametric approaches. After a brief reference to Gumbel's block methodology and more recent improvements in the parametric framework, we present an overview of the developments on the estimation of parameters of extreme events and on the testing of extreme value conditions under a semi-parametric framework. We further discuss a few challenging topics in the area of SUE. © 2014 The Authors. International Statistical Review © 2014 International Statistical Institute
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://hdl.handle.net/10.1111/insr.12058 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:83:y:2015:i:2:p:263-292
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().