EconPapers    
Economics at your fingertips  
 

Modeling Temporally Evolving and Spatially Globally Dependent Data

Emilio Porcu, Alfredo Alegria and Reinhard Furrer

International Statistical Review, 2018, vol. 86, issue 2, 344-377

Abstract: The last decades have seen an unprecedented increase in the availability of data sets that are inherently global and temporally evolving, from remotely sensed networks to climate model ensembles. This paper provides an overview of statistical modeling techniques for space–time processes, where space is the sphere representing our planet. In particular, we make a distintion between (a) second order‐based approaches and (b) practical approaches to modeling temporally evolving global processes. The former approaches are based on the specification of a class of space–time covariance functions, with space being the two‐dimensional sphere. The latter are based on explicit description of the dynamics of the space–time process, that is, by specifying its evolution as a function of its past history with added spatially dependent noise. We focus primarily on approach (a), for which the literature has been sparse. We provide new models of space–time covariance functions for random fields defined on spheres cross time. Practical approaches (b) are also discussed, with special emphasis on models built directly on the sphere, without projecting spherical coordinates onto the plane. We present a case study focused on the analysis of air pollution from the 2015 wildfires in Equatorial Asia, an event that was classified as the year's worst environmental disaster. The paper finishes with a list of the main theoretical and applied research problems in the area, where we expect the statistical community to engage over the next decade.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
https://doi.org/10.1111/insr.12266

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:86:y:2018:i:2:p:344-377

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:86:y:2018:i:2:p:344-377