EconPapers    
Economics at your fingertips  
 

Ranking Forecasts by Stochastic Error Distance, Information and Reliability Measures

Omid Ardakani, Nader Ebrahimi and Ehsan S. Soofi

International Statistical Review, 2018, vol. 86, issue 3, 442-468

Abstract: The stochastic error distance (SED) introduced by Diebold and Shin () ranks forecast models by divergence between distributions of the errors of the actual and perfect forecast models. The basic SED is defined by the variation distance and provides a representation of the mean absolute error, but by basing ranking on the entire error distribution and divergence, the SED moves beyond the traditional forecast evaluations. First, we establish connections between ranking forecast models by the SED, error entropy and some partial orderings of distributions. Then, we introduce the notion of excess error for forecast errors of magnitudes larger than a tolerance threshold and give the SED representation of the mean excess error (MEE). As a function of the threshold, the MEE is a local risk measure. With the distribution of the absolute error as a prior for the threshold, its Bayes risk is the entropy functional of the survival function, which is a known measure in the information theory and reliability. Notions and results are illustrated using various distributions for the error. The empirical versions of SED, MEE and its Bayes risk are compared with the mean squared error in ranking regression and autoregressive integrated moving average models for forecasting bond risk premia.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://doi.org/10.1111/insr.12250

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:86:y:2018:i:3:p:442-468

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:86:y:2018:i:3:p:442-468