Extrapolation‐based Bandwidth Selectors: A Review and Comparative Study with Discussion on Bivariate Applications
Qing Wang
International Statistical Review, 2019, vol. 87, issue 1, 127-151
Abstract:
Cross‐validation is a widely used tool in selecting the smoothing parameter in a non‐parametric procedure. However, it suffers from large sampling variation and tends to overfit the data set. Many attempts have been made to reduce the variance of cross‐validation. This paper focuses on two recent proposals of extrapolation‐based cross‐validation bandwidth selectors: indirect cross‐validation and subsampling‐extrapolation technique. In univariate case, we notice that using a fixed value parameter surrogate for indirect cross‐validation works poorly when the true density is hard to estimate, while the subsampling‐extrapolation technique is more robust to non‐normality. We investigate whether a hybrid bandwidth selector could benefit from the advantages of both approaches and compare the performance of different extrapolation‐based bandwidth selectors through simulation studies, real data analyses and large sample theory. A discussion on their extension to bivariate case is also presented.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/insr.12276
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:87:y:2019:i:1:p:127-151
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().