EconPapers    
Economics at your fingertips  
 

Interpoint Distance Classification of High Dimensional Discrete Observations

Lingzhe Guo and Reza Modarres

International Statistical Review, 2019, vol. 87, issue 2, 191-206

Abstract: Classification is a multivariate technique that is concerned with allocating new observations to two or more groups. We use interpoint distances to measure the closeness of the samples and construct new rules for high dimensional classification of discrete observations. Applicable to high dimensional data, the new method is non‐parametric and uses test‐based classification with permutation testing. We propose a modification of a test‐based rule to use relative values with respect to the training samples baseline. We compare the proposed rule with parametric methods, such as likelihood ratio rule and modified linear discriminate function, and non‐parametric techniques such as support vector machine, nearest neighbour and depth‐based classification, under multivariate Bernoulli, multinomial and multivariate Poisson distributions.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/insr.12281

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:87:y:2019:i:2:p:191-206

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:87:y:2019:i:2:p:191-206