Cumulative and CUB Models for Rating Data: A Comparative Analysis
Domenico Piccolo,
Rosaria Simone and
Maria Iannario
International Statistical Review, 2019, vol. 87, issue 2, 207-236
Abstract:
Ordinal measurements as ratings, preference and evaluation data are very common in applied disciplines, and their analysis requires a proper modelling approach for interpretation, classification and prediction of response patterns. This work proposes a comparative discussion between two statistical frameworks that serve these goals: the established class of cumulative models and a class of mixtures of discrete random variables, denoted as CUB models, whose peculiar feature is the specification of an uncertainty component to deal with indecision and heterogeneity. After surveying their definition and main features, we compare the performances of the selected paradigms by means of simulation experiments and selected case studies. The paper is tailored to enrich the understanding of the two approaches by running an extensive and comparative analysis of results, relative advantages and limitations, also at graphical level. In conclusion, a summarising review of the key issues of the alternative strategies and some final remarks are given, aimed to support a unifying setting.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/insr.12282
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:87:y:2019:i:2:p:207-236
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().