EconPapers    
Economics at your fingertips  
 

Cumulative and CUB Models for Rating Data: A Comparative Analysis

Domenico Piccolo, Rosaria Simone and Maria Iannario

International Statistical Review, 2019, vol. 87, issue 2, 207-236

Abstract: Ordinal measurements as ratings, preference and evaluation data are very common in applied disciplines, and their analysis requires a proper modelling approach for interpretation, classification and prediction of response patterns. This work proposes a comparative discussion between two statistical frameworks that serve these goals: the established class of cumulative models and a class of mixtures of discrete random variables, denoted as CUB models, whose peculiar feature is the specification of an uncertainty component to deal with indecision and heterogeneity. After surveying their definition and main features, we compare the performances of the selected paradigms by means of simulation experiments and selected case studies. The paper is tailored to enrich the understanding of the two approaches by running an extensive and comparative analysis of results, relative advantages and limitations, also at graphical level. In conclusion, a summarising review of the key issues of the alternative strategies and some final remarks are given, aimed to support a unifying setting.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.1111/insr.12282

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:87:y:2019:i:2:p:207-236

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:87:y:2019:i:2:p:207-236