Projection‐Based Inference in Randomised Clinical Trials
Biao Zhang
International Statistical Review, 2019, vol. 87, issue 2, 263-284
Abstract:
Covariate information is often available in randomised clinical trials for each subject prior to treatment assignment and is commonly utilised to make covariate adjustment for baseline characteristics predictive of the outcome in order to increase precision and improve power in the detection of a treatment effect. Motivated by a nonparametric covariance analysis, we study a projection approach to making objective covariate adjustment in randomised clinical trials on the basis of two unbiased estimating functions that decouple the outcome and covariate data. The proposed projection approach extends a weighted least‐squares procedure by projecting one of the estimating functions onto the linear subspace spanned by the other estimating function that is E‐ancillary for the average treatment effect. Compared with the weighted least‐squares method, the projection method allows for objective inference on the average treatment effect by exploiting the treatment specific covariate–outcome associations. The resulting projection‐based estimator of the average treatment effect is asymptotically efficient when the treatment‐specific working regression models are correctly specified and is asymptotically more efficient than other existing competitors when the treatment‐specific working regression models are misspecified. The proposed projection method is illustrated by an analysis of data from an HIV clinical trial. In a simulation study, we show that the proposed projection method compares favourably with its competitors in finite samples.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/insr.12304
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:87:y:2019:i:2:p:263-284
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().