EconPapers    
Economics at your fingertips  
 

A Comparison of Methods for Poverty Estimation in Developing Countries

Sumonkanti Das and Stephen Haslett

International Statistical Review, 2019, vol. 87, issue 2, 368-392

Abstract: Small area estimation is a widely used indirect estimation technique for micro‐level geographic profiling. Three unit level small area estimation techniques—the ELL or World Bank method, empirical best prediction (EBP) and M‐quantile (MQ) — can estimate micro‐level Foster, Greer, & Thorbecke (FGT) indicators: poverty incidence, gap and severity using both unit level survey and census data. However, they use different assumptions. The effects of using model‐based unit level census data reconstructed from cross‐tabulations and having no cluster level contextual variables for models are discussed, as are effects of small area and cluster level heterogeneity. A simulation‐based comparison of ELL, EBP and MQ uses a model‐based reconstruction of 2000/2001 data from Bangladesh and compares bias and mean square error. A three‐level ELL method is applied for comparison with the standard two‐level ELL that lacks a small area level component. An important finding is that the larger number of small areas for which ELL has been able to produce sufficiently accurate estimates in comparison with EBP and MQ has been driven more by the type of census data available or utilised than by the model per se.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://doi.org/10.1111/insr.12314

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:87:y:2019:i:2:p:368-392

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:87:y:2019:i:2:p:368-392