EconPapers    
Economics at your fingertips  
 

Model‐Assisted Regression Estimators for Longitudinal Data with Nonignorable Dropout

Lei Wang, Cuicui Qi and Jun Shao

International Statistical Review, 2019, vol. 87, issue S1, S121-S138

Abstract: Estimation with longitudinal Y having nonignorable dropout is considered when the joint distribution of Y and covariate X is nonparametric and the dropout propensity conditional on (Y,X) is parametric. We apply the generalised method of moments to estimate the parameters in the nonignorable dropout propensity based on estimating equations constructed using an instrument Z, which is part of X related to Y but unrelated to the dropout propensity conditioned on Y and other covariates. Population means and other parameters in the nonparametric distribution of Y can be estimated based on inverse propensity weighting with estimated propensity. To improve efficiency, we derive a model‐assisted regression estimator making use of information provided by the covariates and previously observed Y‐values in the longitudinal setting. The model‐assisted regression estimator is protected from model misspecification and is asymptotically normal and more efficient when the working models are correct and some other conditions are satisfied. The finite‐sample performance of the estimators is studied through simulation, and an application to the HIV‐CD4 data set is also presented as illustration.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/insr.12288

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:87:y:2019:i:s1:p:s121-s138

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:87:y:2019:i:s1:p:s121-s138