Sampling Techniques for Big Data Analysis
Jae Kwang Kim and
Zhonglei Wang
International Statistical Review, 2019, vol. 87, issue S1, S177-S191
Abstract:
In analysing big data for finite population inference, it is critical to adjust for the selection bias in the big data. In this paper, we propose two methods of reducing the selection bias associated with the big data sample. The first method uses a version of inverse sampling by incorporating auxiliary information from external sources, and the second one borrows the idea of data integration by combining the big data sample with an independent probability sample. Two simulation studies show that the proposed methods are unbiased and have better coverage rates than their alternatives. In addition, the proposed methods are easy to implement in practice.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/insr.12290
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:87:y:2019:i:s1:p:s177-s191
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().