EconPapers    
Economics at your fingertips  
 

Analysis of Categorical Data for Complex Surveys

Chris Skinner

International Statistical Review, 2019, vol. 87, issue S1, S64-S78

Abstract: This paper reviews methods for handling complex sampling schemes when analysing categorical survey data. It is generally assumed that the complex sampling scheme does not affect the specification of the parameters of interest, only the methodology for making inference about these parameters. The organisation of the paper is loosely chronological. Contingency table data are emphasised first before moving on to the analysis of unit‐level data. Weighted least squares methods, introduced in the mid 1970s along with methods for two‐way tables, receive early attention. They are followed by more general methods based on maximum likelihood, particularly pseudo maximum likelihood estimation. Point estimation methods typically involve the use of survey weights in some way. Variance estimation methods are described in broad terms. There is a particular emphasis on methods of testing. The main modelling methods considered are log‐linear models, logit models, generalised linear models and latent variable models. There is no coverage of multilevel models.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/insr.12285

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:87:y:2019:i:s1:p:s64-s78

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:87:y:2019:i:s1:p:s64-s78