Empirical Likelihood Approach for Aligning Information from Multiple Surveys
Yves G. Berger and
Ewa Kabzińska
International Statistical Review, 2020, vol. 88, issue 1, 54-74
Abstract:
When two surveys carried out separately in the same population have common variables, it might be desirable to adjust each survey's weights so that they give equal estimates for the common variables. This problem has been studied extensively and has often been referred to as alignment or numerical consistency. We develop a design‐based empirical likelihood approach for alignment and estimation of complex parameters defined by estimating equations. We focus on a general case when a single set of adjusted weights, which can be applied to both common and non‐common variables, is produced for each survey. The main contribution of the paper is to show that the impirical log‐likelihood ratio statistic is pivotal in the presence of alignment constraints. This pivotal statistic can be used to test hypotheses and derive confidence regions. Hence, the empirical likelihood approach proposed for alignment possesses the self‐normalisation property, under a design‐based approach. The proposed approach accommodates large sampling fractions, stratification and population level auxiliary information. It is particularly well suited for inference about small domains, when data are skewed. It includes implicit adjustments when the samples considerably differ in size. The confidence regions are constructed without the need for variance estimates, joint‐inclusion probabilities, linearisation and re‐sampling.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/insr.12337
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:88:y:2020:i:1:p:54-74
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().