Horseshoe Regularisation for Machine Learning in Complex and Deep Models
Anindya Bhadra,
Jyotishka Datta,
Yunfan Li and
Nicholas Polson
International Statistical Review, 2020, vol. 88, issue 2, 302-320
Abstract:
Since the advent of the horseshoe priors for regularisation, global–local shrinkage methods have proved to be a fertile ground for the development of Bayesian methodology in machine learning, specifically for high‐dimensional regression and classification problems. They have achieved remarkable success in computation and enjoy strong theoretical support. Most of the existing literature has focused on the linear Gaussian case; for which systematic surveys are available. The purpose of the current article is to demonstrate that the horseshoe regularisation is useful far more broadly, by reviewing both methodological and computational developments in complex models that are more relevant to machine learning applications. Specifically, we focus on methodological challenges in horseshoe regularisation in non‐linear and non‐Gaussian models, multivariate models and deep neural networks. We also outline the recent computational developments in horseshoe shrinkage for complex models along with a list of available software implementations that allows one to venture out beyond the comfort zone of the canonical linear regression problems.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/insr.12360
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:88:y:2020:i:2:p:302-320
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().