Properties of h‐Likelihood Estimators in Clustered Data
Lee Youngjo and
Gwangsu Kim
International Statistical Review, 2020, vol. 88, issue 2, 380-395
Abstract:
We study properties of the maximum h‐likelihood estimators for random effects in clustered data. To define optimality in random effects predictions, several foundational concepts of statistics such as likelihood, unbiasedness, consistency, confidence distribution and the Cramer–Rao lower bound are extended. Exact probability statements about interval estimators for random effects can be made asymptotically without a prior assumption. Using the binary‐matched pair example, we illustrated that the use of random effects recover information, leading to the boon on estimating treatment effects.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/insr.12354
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:88:y:2020:i:2:p:380-395
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().