Statistical Network Analysis: A Review with Applications to the Coronavirus Disease 2019 Pandemic
Joshua Daniel Loyal and
Yuguo Chen
International Statistical Review, 2020, vol. 88, issue 2, 419-440
Abstract:
As the coronavirus disease 2019 outbreak evolves, statistical network analysis is playing an essential role in informing policy decisions. Therefore, researchers who are new to such studies need to understand the techniques available to them. As a field, statistical network analysis aims to develop methods that account for the complex dependencies found in network data. Over the last few decades, the area has rapidly accumulated methods, including techniques for network modelling and simulating the spread of infectious disease. This article reviews these network modelling techniques and their applications to the coronavirus disease 2019 pandemic.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/insr.12398
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:88:y:2020:i:2:p:419-440
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().